The 7th Seminar on Commutative Algebra and Related Topics

December 1 & 2, 2010 School of Mathematics, IPM

About IPM and its School of Mathematics

The Institute for Research in Fundamental Sciences (IPM) is an institute affiliated with the Ministry of Science, Research, and Technology. It was founded in 1989 under the name "Institute for Studies in Theoretical Physics and Mathematics" and its initial goal was the advancement of research and innovation in theoretical physics and mathematics. The foundation of the Institute was also accompanied by hopes and expectations that a model would be developed which could serve as a basis for the promotion of the culture of research all across the country.

The Institute started its activities with three research groups in physics and three research groups in mathematics (Combinatorics and Computing, Dynamical Systems, and Mathematical Logic & Theoretical Computer Science). Initially it had few researchers and limited resources, but gradually it managed to expand its manpower in physics and mathematics, and it also attracted scientists from other disciplines. The activities of the Institute thus extended to other fields and in 1997 it acquired its present name. The Institute now consists of 8 schools: Analytic Philosophy Astronomy, Cognitive Sciences, Computer Science, Mathematics, Nano Science, Particles and Accelerator, and Physics. It enjoys an expanding base of infrastructures and facilities (electronic networking, computers, laboratories, a well-equipped and up-to-date library), and has an active presence in the national research activities within the corresponding fields.

The School of Mathematics (formerly called the Section of Mathematics) has been one of the founder schools of IPM. Presently, there are three main research areas at the School: Combinatorics and Computing, Commutative Algebra, and Mathematical Logic. Different research modalities are available at the School of Mathematics: Founding Fellows, Faculty Members, Postdoctal Research Fellows, Senior Associate Researchers, Junior Associate Researchers, Non-Resident Researchers, and Student Researchers in full-time, part-time, and non-resident modes.

Contact:

School of Math., Tel.: (+98-21) 22290928, Email: ipmmath@ipm.ir

About the Seminar

Commutative algebra series of meetings represents a collaborative effort of Iranian commutative algebraists. 7th seminar on commutative algebra and related topics will be held on December 1-2, 2010 (10-11 Azar 1389), at the School of Mathematics of IPM, Tehran, Iran.

The goal of this session is to bring together many Iranian mathematicians who are working in commutative algebra and related fields to introduce students and young researchers to the current research topics.

Organizers

- Mohsen Asgharzadeh (IPM, asgharzadeh@ipm.ir)
- Mohammad-Taghi Dibaei (Tarbiat Moallem University & IPM, dibaeimt@ipm.ir)

Speakers

- Josep Alvarez Montaner, Universitat Politecnica de Catalunya, Spain
- Javad Asadollahi, University of Isfahan and IPM,
- Abdolnaser Bahlakeh, Gonbade-Kavous University,
- Keivan Borna, Tarbiat Moallem University and IPM,
- Seadat Ollah Faramarzi, Payame Noor University, Shahrood,
- Mohsen Gheibi, Tarbiat Moallem University,
- Ali Hajizamani, Shahre-Kord University,
- Esmaeil Hosseini, University of Isfahan and IPM,
- Maryam Jahangiri, Damghan University and IPM,
- Fahimeh Khosh-Ahang, Ilam University,
- Amir Mafi, University of Kurdistan and IPM,
- Fatemeh Mohammadi, Islamic Azad University,
- Reza Naghipour, University of Tabriz and IPM,
- Abbas Nasrollah Nejad, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan,
- Parviz Sahandi, University of Tabriz and IPM,
- Shokrollah Salarian, University of Isfahan and IPM,
- Ahmad Yousefian Darani, University of Mohaghegh Ardabili, Ardabil,
- **Rashid Zaare-Nahandi**, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan.

Schedule of talks

	December 1 Wednesday	December 2 Thursday
8:30-9:00	Registration	
9:00-9:50	J. Asadollahi A Nice Generalization of Submodule Categories is Almost Frobenius	J. Alvarez Montaner Some Examples and Applications of Cartier Algebras
10:00-10:50	Rashid Zaare-Nahandi Barycentric Subdivision of a Simplicial Complex	A. Nasrollah Nejad The Gradient Aluffi Algebra
11:00-11:30	Coffee Break	Coffee Break
11:30-12:00	P. Sahandi Semistar Normal Pairs And Related Characterizations Of P*Mds	R. Naghipour Quintasymptotic Sequences over an Ideal
12:00-12:30	M. Jahangiri Boundedness of Cohomology	K. Borna How To Compute The Associated Primes and Regularity of Monomial Ideals
12:30-14:00	Lunch	Lunch
14:00-14:30	S. Salarian On the Adjoint Functors on the Homotopy Categories	A. Yousefian Darani On Weakly 2-Absorbing Ideals Of Commutative Rings
14:30-15:00	A. Bahlekeh Cofibrant and Gorenstein Projective Modules	S. Faramarzi Balanced 3-Polytopes
15:00-15:30	F. Khosh-Ahang Some Generalizations Of Bass Formula	Coffee Break
15:30-16:00	Coffee Break	F. Mohammadi Foxby Equivalence, Local Duality And Gorenstein Homological Dimensions
16:00-16:30	A. Hajizamani Periodic Flat Resolutions and Periodicity in Group (co)homology	M. Gheibi Linkage of Modules over Cohen- Macaulay Rings
16:30-17:00	A. Mafi On The Finiteness Dimension Of Local Cohomology Module	
17:00-17:30	E. Hosseini Model Category Structure Induced By Complete Cotorsion Pairs	

Some Examples and Applications of Cartier Algebras

Josep Alvarez Montaner

Universitat Politecnica de Catalunya Barcelona, Spain

The recent development in the study of Cartier algebras has given a new approach to the description of generalized test ideals in non regular rings. In this talk we will first recall the notion of Frobenius and Cartier algebras associated to an R-module and then we will give a full description for the case of Stanley-Reisner rings. This description allow us to study the discreteness of the set of F-jumping numbers of the corresponding generalized test ideals.

A Nice Generalization of Submodule Categories is Almost Frobenius

Javad Asadollahi University of Isfahan Isfahan, Iran & IPM Tehran, Iran

In this lecture we consider the category of mono-representations of a certain two flag quiver and show that it is almost Frobenius. This category, in fact, provides a very nice generalization of the notion of submodule categories.

This is a joint 'work in progress' with H. Lenzing.

Cofibrant and Gorenstein Projective Modules

Abdolnaser Bahlekeh

Gonbad-e-Kavous University Gonbad-e-Kavous, Iran

Benson introduced the cofibrant modules for his study of $\mathbb{Z}\Gamma$ -modules of type $\operatorname{FP}_{\infty}$ when Γ is in the class LH \mathcal{F} . For any group Γ , a $\mathbb{Z}\Gamma$ -module M is said to be cofibrant if $M \otimes B(\Gamma, \mathbb{Z})$ with diagonal Γ -action is a projective $\mathbb{Z}\Gamma$ -module, where $B(\Gamma, \mathbb{Z})$ is the set of bounded functions from Γ to \mathbb{Z} . A $\mathbb{Z}\Gamma$ -module A is said to be of type $\operatorname{FP}_{\infty}$ if A admits a projective resolution by finitely generated projective modules. The class $\mathcal{H}\mathcal{F}$ was defined by Kropholler as the smallest class of groups that contains the class of finite groups and whenever a group Γ admits a finite-dimensional contractible Γ -CW-complex with stabilizers in $\mathcal{H}\mathcal{F}$, then Γ is in $\mathcal{H}\mathcal{F}$. Denote by LH \mathcal{F} the class of groups Γ such that every finitely generated subgroup of Γ is in $\mathcal{H}\mathcal{F}$.

On the other hand, Asadollahi, Bahlekeh and Salarian studied Gorenstein projective modules in the category of $\mathbb{Z}\Gamma$ -modules. It is easy to see that every cofibrant $\mathbb{Z}\Gamma$ -module is Gorenstein projective. We believe that in essence the two notions, cofibrant and Gorenstein projective, are the same. Here, we obtain some results pointing to this direction. These results is based on a joint work with O. Talelli and F. Dembegioti.

How to Compute the Associated Primes and Regularity of Monomial Ideals

Keivan Borna Tarbiat Moallem University Tehran, Iran & IPM Tehran, Iran

Generally speaking there is no guaranty for having the implication " $\mathfrak{p} \in \operatorname{ass}_S I \Longrightarrow \mathfrak{p} \in \operatorname{ass}_S I^n$ for all $n \geq 1$." In this talk we show that for a monomial ideal I of a polynomial ring S over a field K, if $\mathfrak{p} \in \operatorname{ass}_S I$ and ht $\mathfrak{p} = \lambda(I)$, where $\lambda(I)$ is the number of indeterminates appear in generators of I, then $\mathfrak{p} \in \operatorname{ass}_S I^n$ for all $n \geq 1$.

In the second part of this talk, we find the regularity of monomial ideals that satisfy some conditions on their primary representation. More precisely, let I be a monomial ideal of S. Then $I = \bigcap_{i=1}^{k} Q_i$, where each Q_j is generated by pure powers of the variables. Thus Q_j is a \mathfrak{p}_j -primary ideal, where $\mathfrak{p}_j = (x_{i_1}, \cdots, x_{i_c})$ for some positive integer c. One now can note that $\operatorname{ht}(Q_j) = \operatorname{ht}(x_{i_1}, \cdots, x_{i_c}) = c$ and indeed $c \leq \lambda(I)$. Hence $\operatorname{ht}(\mathfrak{p}) \leq \lambda(I)$ for all $\mathfrak{p} \in \operatorname{ass}_S I$. It now makes perfect sense to see whenever the equality holds in fact. We say that I satisfies the maximal height condition for $\operatorname{ass}_S I$ (MHC for short), if there exists a prime ideal $\mathfrak{p} \in \operatorname{ass}_S I$ with $\operatorname{ht}(\mathfrak{p}) = \lambda(I)$. We show that if I satisfies the MHC, then $\operatorname{reg}(I) = m(I) = \max\{|Q_j| - \operatorname{ht}(Q_j) | j = 1, \ldots, k\}$. That is, regularity of such ideals is given by $\max\{|Q| - ht(Q)\}$, where Q appears in the irredundant pure primary representation of I.

Balanced 3-Polytopes

Seadat Ollah Faramarzi

Payame Noor University Shahrood, Iran

In this lecture we give a list of all possibly occurring E-equivalence classes of three-dimensional balanced and Col-divisible polytopes. Also we compute all balanced polytopes which are not Col-divisible.

Linkage of Modules over Cohen-Macaulay Rings

Mohsen Gheibi Tarbiat Moallem University Tehran, Iran & IPM Tehran, Iran

Inspired by the works in linkage theory of ideals, the concept of sliding depth of extension modules is defined to prove the Cohen-Macaulyness of linked module if the base ring is merely Cohen-Macaulay. Some relations between this new condition and other module-theory conditions such as G-dimension and sequentially Cohen-Macaulay are established. By the way several already known theorems in linkage theory are improved or recovered by new approaches.

This is a joint work with M.T. Dibaei, S.H. Hassanzadeh, and A. Sadeghi.

Periodic Flat Resolutions and Periodicity in Group (Co)homology

Ali Hajizamani

Shahre-Kord University Shahre-Kord, Iran & IPM Tehran, Iran

Using the notion of flat covers and proper flat resolutions, we study modules with periodic flat resolutions. It follows that equivalently, we may study modules with periodic homology. We specialize our results to the category of modules over integral group ring $\mathbb{Z}\Gamma$, where Γ is an arbitrary group. Among other results, we show that if a group Γ is in a certain class of groups then Γ has periodic homology of period q after some steps with the periodicity isomorphisms of homology groups induced by the cap product with an element in $H^q(\Gamma, C)$, where C is the cotorsion envelope of the trivial Γ -module \mathbb{Z} , if and only if it has periodic cohomology of period q after some steps with the periodicity isomorphisms of cohomology groups induced by the cup product with an element in $H^q(\Gamma, \mathbb{Z})$.

Model Category Structure Induced by Complete Cotorsion Pairs

Esmaeil Hosseini

University of Isfahan Isfahan, Iran & IPM Tehran, Iran

Let X be a noetherian scheme and $\operatorname{Flat}(X)$ be the class of all flat quasi-coherent \mathcal{O}_X -modules. We show that the complete cotorsion pair ($\operatorname{Flat}(X)$, $\operatorname{Flat}(X)^{\perp}$) induces a complete cotorsion pair in the category \mathcal{C} of chain complexes of quasi-coherent \mathcal{O}_X -modules. This in turn provides a model category structure on \mathcal{C} .

Boundedness of Cohomology

Maryam Jahangiri

Damghan University Damghan, Iran & IPM Tehran, Iran

Let $d \in \mathbb{N}$ and let \mathcal{D}^d denote the class of all pairs (R, M) in which $R = \bigoplus_{n \in \mathbb{N}_0} R_n$ is a Noetherian homogeneous ring with Artinian base ring R_0 and such that M is a finitely generated graded Rmodule of dimension $\leq d$. For such a pair (R, M) let $d_M^i(n)$ denotes the (finite)- R_0 length of the *n*-th graded component of the *i*-th R_+ - transform module $D_{R_+}^i(M)$.

We are looking for subcategories of \mathcal{D}^d , say \mathcal{C} , for which the set of cohomology tables $\{d_M := (d_M^i(n))_{(i,n)\in\mathbb{N}\times\mathbb{Z}}|(R,M)\in\mathcal{C}\}$ is finite.

This is a joint work with M. Brodmann and C. H. Linh.

Some Generalizations of Bass Formula

Fahimeh Khosh-Ahang

Ilam University Ilam, Iran

In this talk, by comparing the Krull dimension, Gorenstein injective dimension and injective dimension of a module, we establish some generalizations of the Bass formula.

On the Finiteness Dimension of Local Cohomology Modules

Amir Mafi

University of Kurdistan Kurdistan, Iran & IPM Tehran, Iran

Let R be a commutative Noetherian ring, \mathfrak{a} an ideal of R, and M a non-zero finitely generated R-module. Let t be a non-negative integer. It is shown that dim Supp $H^i_{\mathfrak{a}}(M) \leq 1$ for all i < t if and only if there exists an ideal \mathfrak{b} of R such that dim $R/\mathfrak{b} \leq 1$ and $H^i_{\mathfrak{a}}(M) \cong H^i_{\mathfrak{b}}(M)$ for all i < t. Moreover, we prove that dim Supp $H^i_{\mathfrak{a}}(M) \leq \dim M - i$ for all i.

Foxby Equivalence, Local Duality and Gorenstein Homological Dimensions

Fatemeh Mohammadi

Islamic Azad University Tehran, Iran

Let (R, \mathfrak{m}) be a local ring and $(-)^{\vee}$ denote the Matlis duality functor. We investigate the relationship between Foxby equivalence and local duality through generalized local cohomology. Assume that R possesses a normalized dualizing complex D and X and Yare two homologically bounded complexes of R-modules with finitely generated homology modules. If Gorenstein projective dimension of X and injective dimension Y are finite, then we show that

$$\mathbf{R}\Gamma_{\mathfrak{m}}(\mathbf{R}\operatorname{Hom}_{R}(X,Y))\simeq (\mathbf{R}\operatorname{Hom}_{R}(Y,D\otimes_{R}^{\mathbf{L}}X))^{\vee}.$$

Also, we prove that if Gorenstein injective dimension of Y and projective dimension of X are finite, then

 $\mathbf{R}\Gamma_{\mathfrak{m}}(\mathbf{R}\operatorname{Hom}_{R}(X,Y)) \simeq (\mathbf{R}\operatorname{Hom}_{R}(\mathbf{R}\operatorname{Hom}_{R}(D,Y),X))^{\vee}.$

We present several other duality results. As applications, we establish Grothendieck's non-vanishing Theorem in the context of generalized local cohomology modules and we give some insight to two questions raised by Christensen, Foxby and Holm.

Quintasymptotic Sequences over an Ideal

Reza Naghipour University of Tabriz Tabriz, Iran & IPM Tehran, Iran

Let *I* be an ideal in a Noetherian ring *R*. A prime ideal \mathfrak{p} is called a *quintasymptotic prime ideal* of *I* if there exists $\mathfrak{q} \in \operatorname{mAss} R^*_{\mathfrak{p}}$ such that $\operatorname{Rad}(IR^*_{\mathfrak{p}} + \mathfrak{q}) = \mathfrak{p}R^*_{\mathfrak{p}}$, where $R^*_{\mathfrak{p}}$ denotes the $\mathfrak{p}R_{\mathfrak{p}}$ -adic completion of $R_{\mathfrak{p}}$. The set of *quintasymptotic primes* of *I* is denoted by $\overline{Q}^*(I)$. The purpose of this talk is to introduce the concept of the quintasymptotic sequence over *I*, and is to show that if *R* is local, then the lengths of all maximal quintasymptotic sequences over *I* are the same, and equal to:

$$qacorade I = \min\{\dim(R^*/IR^* + \mathfrak{q}) \mid \mathfrak{q} \in \mathrm{mAss} R^*\}$$
$$= \min\{\dim R^*/\mathfrak{q} - ht(IR^* + \mathfrak{q}/\mathfrak{q}) \mid \mathfrak{q} \in \mathrm{mAss} R^*\}.$$

The Gradient Aluffi Algebra

Abbas Nasrollah Nejad

Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan, Iran

Paolo Aluffi in a striking paper that shows, in the case of a hypersurface, how to define a so-called *characteristic cycle* in parallel to the well-known *conormal cycle* in intersection theory. In order to do so, Aluffi introduces an intermediate algebra between a symmetric algebra of an ideal and the corresponding Rees algebra (blowup). Of course, algebraists have long been considering such intermediations in a variety of setups, but what comes as a striking fact is that one of these has such a basic and immediate impact in a celebrated difficult area of algebraic geometry.

Aluffi has dubbed his construction a *quasi-symmetric* algebra. Since there are many homomorphic images of the symmetric algebra that could equally benefit from this terminology, A.Nasrollah Nejad and A.Simis called it an *Aluffi algebra*.

Semistar Normal Pairs and P*MDs

Parviz Sahandi

University of Tabriz Tabriz, Iran & IPM Tehran, Iran

Given an overring extension of domains $D \subseteq T$, we introduce the semistar-theoretic analogues of D being integrally closed in T, (D, T) being a normal pair, $D \subseteq T$ being a residually algebraic extension and (D, T) being a residually algebraic pair. Our main result generalizes Davis' characterization of normal pairs (D, T) as (overring) extensions $D \subseteq T$ for which each intermediate ring is D-flat, while also generalizing some celebrated characterizations of Prüfer domains and several results of Ayache-Jabbalah on residually algebraic pairs. This work also involves extending the connections between the semistar-theoretic notions of primitivity and INC-pair that were given by Chang and Fontana. Applications include several characterizations of P*MDs.

On the Adjoint Functors on the Homotopy Categories

Shokrollah Salarian

University of Isfahan Isfahan, Iran & IPM Tehran, Iran

In this talk, we will discuss the existence of some special adjoints on the homotopy category of flats as well as projectives and also injectives. We also will present some applications of these adjoints.

ON Weakly 2-Absorbing Ideals of Commutative Rings

Ahmad Yousefian Darani

University of Mohaghegh Ardabili Ardabil, Iran

In this talk, we study weakly 2-absorbing ideals of a commutative ring with identity as a generalization of weakly prime ideals. Badawi introduced the concept of 2-absorbing ideals, which are a generalization of prime ideals, where a proper ideal I of a commutative ring R is called a 2-*absorbing ideal of* R if whenever $a, b, c \in R$ and $abc \in I$, then either $ab \in I$ or $ac \in I$ or $bc \in I$. Recall also that a proper ideal I of a commutative ring R is said to be a *weakly prime ideal of* R if whenever $a, b \in R$ and $0 \neq ab \in I$, then either $a \in I$ or $b \in I$. We define a proper ideal of a commutative ring R to be a *weakly 2-absorbing ideal of* R if whenever $a, b, c \in R$ and $0 \neq abc \in I$, then either $ab \in I$ or $ac \in I$ or $bc \in I$. For example, every proper ideal of a quasi-local ring (R, M) with $M^3 = \{0\}$ is a weakly 2-absorbing ideal of R. We provide many basic properties of weakly 2-absorbing ideals. We also give a characterization for commutative rings with the property that all proper ideals are weakly 2-absorbing ideals.

Barycentric Subdivision of a Simplicial Complex

Rashid Zaare-Nahandi

Institute for Advanced Studies in Basic Sciences (ISBS) Zanjan, Iran

In this talk we show that a simplicial complex can be determined uniquely up to isomorphism by its barycentric subdivision or comparability graph. It is summarized several algebraic, combinatorial and topological invariants of simplicial complexes. As a consequence, it is shown that checking Cohen-Macauleyness of all simplicial complexes, is equal to checking Cohen-Macaulayness of all graphs with uniquely transitively orientable complement.

List of Participants

Name	Affiliation/ Email
Mohsen Abdi Mackvand	Islamic Azad University m_abdimackvand@yahoo.com
Rasoul Ahangari Maleki	Tarbiat Moallem University rasoulahangari@gmail.com
Abdollah Alhevaz	Tarbiat Modares Univerity a.alhevaz@modares.ac.ir
Zohre Aliabadi	Institute for Advanced Studies in Basic Sciences (IASBS) z_aliabadi@iasbs.ac.ir
Josep Alvarez Montaner	Universitat Politecnica de Catalunya, Spain josep.alvarez@upc.edu
Ensiyeh Amanzadeh	Tarbiat Moallem University e.amanzadeh@tmu.ac.ir
Massoud Amini	Tarbiat Modares University and IPM mamini@modares.ac.ir
Bahram Amirsardari	Islamic Azad University bahramamirsardari@gmail.com
Mohammad Anjom Shoa	anjomshoamh@yahoo.com
Javad Asadollahi	University of Isfahan and IPM asadollahi@ipm.ir
Abdolnaser Bahlekeh	Gonbad-e-Kavous University n.bahlekeh@gmail.com
Somayeh Bandari	Alzahra University and IPM somayehban@yahoo.com
Shamila Bayat	Amirkabir University of Technology shamilabayati@gmail.com
Homa Bijari	Tarbiat Moallem University bijari_h@yahoo.com

Keivan Borna	Tarbiat Moallem University and IPM borna@ipm.ir
	borna@ipin.ii
Golsa Dehghan	Bu Ali Sina University golsa_dehghan@yahoo.com
Kamran Divaani-Aazar	Alzahra University and IPM kdivaani@ipm.ir
Mehdi Dorreh	Shahid Beheshti University and IPM m.dorreh@yahoo.com
Majid Eghbali Koozehkonan	Martin Luther University Halle-Wittenberg m.eghbali@yahoo.com
Seadat Ollah Faramarzi	Payame Noor University, Shahrood s-faramarzi@pnu.ac.ir
Mohsen Gheibi	Tarbiat Moallem University and IPM m_gheybi@hotmail.Com
Somayeh Ghezelahmad	Iran University of Science and Technology s_ghezelahmad@iust.ac.ir
Mohammad Habibi	Tarbiat Modares Univerity mhabibi@modares.ac.ir
Alireza Hajikarimi	alihajikarimi@yahoo.com
Ali Hajizamani	University of Isfahan and IPM a_hajizamani@yahoo.com
Dawood Hassanzadeh Lelekaami	University of Guilan dhmath@guilan.ac.ir
Marziyeh Hatamkhani	Alzahra University hatamkhanim@yahoo.com
Esmaeil Hosseini	Isfahan University and IPM esmaeilmath@gmail.com
Maryam Jahangiri	Damghan University and IPM jahangiri@dub.ac.ir
Reza Kahkeshani	Tarbiat Modares University rkahkeshani@mail.modares.ac.ir

University of Isfahan
hajar.khalili@yahoo.com
Institute for Advanced Studies in Basic Sciences (IASBS)
zkharaghani@gmail.com
Ilam University fahime_khosh@yahoo.com
Amirkabir University of Technology and IPM dkiani@aut.ac.ir
University of Kurdistan and IPM a_mafi@ipm.ir
Islamic Azad University mahmoudi54@gmail.com
K.N. Toosi University of Technology mansourehmahtabi@gmail.com
Iran University of Science and Technology r.mahtabi@gmail.com
Islamic Azad University mohammadi_fh@yahoo.com
f.mohamadzadeh2008@yahoo.com
Tarbiat Modares University moussavi.a@modares.ac.ir
Islamic Azad University amirmousivand@gmail.com
University of Tabriz and IPM naghipour@ipm.ir
Institute for Advanced Studies in Basic Sciences (IASBS) abbasnn@gmail.com
University of Tehran nematbakhsh@khayam.ut.ac.ir

Leila Omarmeli	Razi University
	omarmeli@gmail.com
Bahareh Pashaee Rad	Tarbiat Moallem University
	bahareh.p.rad@gmail.com
Shiroyeh Payrovi	Imam Khomeni International University
	shpayrovi@ikiu.ac.ir
Ahad Rahimi	Razi University and IPM
	Ahad.rahimi@razi.ac.ir
Sadegh Rahimi	Razi University
	sadegh_rahimi62@yahoo.com
Farhad Rahmati	Amirkabir University of Technology
Parnau Kannau	frahmati@aut.ac.ir
	frammati e aut.ac.n
Farzaneh Ramezani	framezani@ipm.ir
Safieh Rezajan	Damghan University
Safien Rezalan	rezaeyan111@yahoo.com
	rezacyani i i @ yanoo.com
Hajar Roshan Shekalgourabi	University of Guilan
5	hroshan@guilan.ac.ir
Hossein Sabzrou	University of Tehran and IPM
	hossein@ipm.ir
Arash Sadeghi	Tarbiat Moallem University
	sadeghiarash61@gmail.com
Seyed Mahdi Sadjadi	mahdisadjadi@ut.ac.ir
Sara Saeedi Madani	Amirkabir University of Technology
Sara Saccar Madam	sarasaeedi@aut.ac.ir
Parviz Sahandi	Tabriz University and IPM
	sahandi@ipm.ir
Shokrollah Salarian	University of Isfahan and IPM
	salarian@ipm.ir
Ali Asghar Sarizadeh Ghouchani	Ilam University
	ali.sarizadeh@gmail.com

Maryam Salimi	maryamsalimi@ipm.ir	
Sara Sekhavati Zadeh	s.sekhavatizade@yahoo.com	
Seyed Amin Seyed Fakhari	Sharif University of Technology and IPM fakhari@ipm.ir	
Aida Shalbafzadeh	aida.shalbafzade@gmail.com	
Leila Sharifan	Tarbiat Moallem University of Sabzevar leilasharifan@yahoo.com	
Nematollah Shirmohammadi	University of Tabriz and IPM nshirmohammadi@yahoo.com	
Fatemeh Soheilnia	University of Mohaghegh Ardabili soheilnia@gmail.com	
Sharareh Tahamtan	Islamic Azad University taham_sh@yahoo.com	
H. A. Tavallaee	Iran University of Science And Technology tavallaee@iust.ac.ir	
Ehsasn Tavanfar	Tarbiat Moallem University tavanfar@gmail.com	
Elham Tavasoli	elhamtavasoli@ipm.ir	
Razieh Vahed	University of Isfahan r.vahed86@gmail.com	
Rezvan Varmazyar	Islamic Azad University varmazyar@iaukhoy.ac.ir	
Ahmad Yousefian Darani	University of Mohaghegh Ardabili youseffian@gmail.com	
Rashid Zaare-Nahandi	Institute for Advanced Studies in Basic Sciences (IASBS) rashidzn@iasbs.ac.ir	
Mohammad Zadehdabbagh	Institute for Advanced Studies in Basic Sciences (IASBS) m.z.dabbagh@gmail.com	

Hossein Zakeri	Tarbiat Moallem University zakeri@saba.tmu.ac.ir
Fatemeh Zarezadeh	University of Isfahan daneshjoo_82@yahoo.com